1,258 research outputs found

    Effects of soil and canopy characteristics on microwave backscattering of vegetation

    Get PDF
    A frequency modulated continuous wave C-band (4.8 GHz) scatterometer was mounted on an aerial lift truck and backscatter coefficients of corn were acquired as functions of polarizations, view angles, and row directions. As phytomass and green leaf area index increased, the backscatter also increased. Near anthesis when the canopies were fully developed, the major scattering elements were located in the upper 1 m of the 2.8 m tall canopy and little backscatter was measured below that level. C-band backscatter data could provide information to monitor vegetation at large view zenith angles

    Estimating scattered and absorbed radiation in plant canopies by remote sensing

    Get PDF
    Several research avenues are summarized. The relationships of canopy characteristics to multispectral reflectance factors of vegetation are reviewed. Several alternative approaches for incorporating spectrally derived information into plant models are discussed, using corn as the main example. A method is described and evaluated whereby a leaf area index is estimated from measurements of radiation transmitted through plant canopies, using soybeans as an example. Albedo of a big bluestem grass canopy is estimated from 60 directional reflectance factor measurements. Effects of estimating albedo with substantially smaller subsets of data are evaluated

    Skylab-EREP studies in computer mapping of terrain in the Cripple Creek-Canon City area of Colorado

    Get PDF
    Multispectral-scanner data from satellites are used as input to computers for automatically mapping terrain classes of ground cover. Some major problems faced in this remote-sensing task include: (1) the effect of mixtures of classes and, primarily because of mixtures, the problem of what constitutes accurate control data, and (2) effects of the atmosphere on spectral responses. The fundamental principles of these problems are presented along with results of studies of them for a test site of Colorado, using LANDSAT-1 data

    Characterization of vegetation by microwave and optical remote sensing

    Get PDF
    Two series of carefully controlled experiments were conducted. First, plots of important crops (corn, soybeans, and sorghum), prairie grasses (big bluestem, switchgrass, tal fescue, orchardgrass, bromegrass), and forage legumes (alfalfa, red clover, and crown vetch) were manipulated to produce wide ranges of phytomass, leaf area index, and canopy architecture. Second, coniferous forest canopies were simulated using small balsam fir trees grown in large pots of soil and arranged systematically on a large (5 m) platform. Rotating the platform produced many new canopies for frequency and spatial averaging of the backscatter signal. In both series of experiments, backscatter of 5.0 GHz (C-Band) was measured as a function of view angle and polarization. Biophysical measurements included leaf area index, fresh and dry phytomass, water content of canopy elements, canopy height, and soil roughness and moisture content. For a subset of the above plots, additional measurements were acquired to exercise microwave backscatter models. These measurements included size and shape of leaves, stems, and fruit and the probability density function of leaf and stem angles. The relationships of the backscattering coefficients and the biophysical properties of the canopies were evaluated using statistical correlations, analysis of variance, and regression analysis. Results from the corn density and balsam fir experiments are discussed and analyses of data from the other experiments are summarized

    Soybean canopy reflectance modeling data sets

    Get PDF
    Numerous mathematical models of the interaction of radiation with vegetation canopies have been developed over the last two decades. However, data with which to exercise and validate these models are scarce. During three days in the summer of 1980, experiments are conducted with the objective of gaining insight about the effects of solar illumination and view angles on soybean canopy reflectance. In concert with these experiment, extensive measurements of the soybean canopies are obtained. This document is a compilation of the bidirectional reflectance factors, agronomic, characteristics, canopy geometry, and leaf, stem, and pod optical properties of the soybean canopies. These data sets should be suitable for use with most vegetation canopy reflectance models

    Strategies for coping with the costs of inpatient care: a mixed methods study of urban and rural poor in Vadodara District, Gujarat, India

    Get PDF
    Background In India, coping mechanisms for inpatient care costs have been explored in rural areas, but seldom among urbanites. This study aims to explore and compare mechanisms employed by the urban and rural poor for coping with inpatient expenditures, in order to help identify formal mechanisms and policies to provide improved social protection for health care

    Diurnal changes in reflectance factor due to Sun-row direction interactions

    Get PDF
    Over a two year period, data were collected regarding the canopies of soybeans grown in rows in planter boxes placed on a turntable in an effort to investigate changes in the spectral reflectance factor related to row direction, Sun direction, soil background, and crop development stage. Results demonstrate that the direction of rows in a soybean canopy can affect the reflectance factor of the canopy by as much as 230%. The results for the red spectral region tend to support the validity of canopy reflectance models; results for the infrared region do not

    Fire Return Interval Within the Northern Boundary of the Larch Forest

    Get PDF
    Larch (Larix spp.) dominant forests compose a large proportion of the forests of Russia (i.e., about 40% of forested areas). These forests range from the Yenisei ridge on the west to the Pacific Ocean on the east, and from Lake Baikal on the south to the 73rd parallel in the north. Larch stands comprise the world s northern most forest at Ary-Mas (72 deg 28' N, 102 deg 15' E). Larch dominated forests occupy about 70% of the permafrost areas in Siberia. Larch forms high closure stands as well as open forests, and is found mainly over permafrost, where other tree species barely survive. Wildfires are typical for this territory with the majority occurring as ground fires due to low crown closure. Due to the thin active layer in permafrost soils and a dense lichen-moss cover, ground fires may cause stand mortality. The vast areas of larch-dominant forests is generally considered as a "carbon sink"; however, positive long-term temperature trends at higher latitudes are expected to result in an increase of fire frequency, and thus may convert this area to a source for greenhouse gases. There are recent observations regarding the increase of fire frequency within non-protected territories. Surprisingly, there are few publications on fire chronoseqences for the huge forested territory between the Ural Mountains and the Pacific Ocean. Also there is a general understanding that bimodal (late spring -- early summer and late summer-beginning of fall) fire seasonal distribution in the south becomes uni-modal (late spring -- early summer) in the north. The purpose of this study is to investigate the wildfire history at the northern edge of the zone of larch dominance
    • …
    corecore